Boolean algebras, Stone spaces and TGD
نویسنده
چکیده
The Facebook discussion with Stephen King about Stone spaces led to a highly interesting development of ideas concerning Boolean, algebras, Stone spaces, and p-adic physics. I have discussed these ideas already earlier but the improved understanding of the notion of Stone space helped to make the ideas more concrete. The basic ideas are briefly summarized. p-adic integers/numbers correspond to the Stone space assignable to Boolean algebra of natural numbers/rationals with p = 2 assignable to Boolean logic. Boolean logic generalizes for n-valued logics with prime values of n in special role. The decomposition of set to n subsets defined by an element of n-Boolean algebra is obtained by iterating Boolean decomposition n− 2 times. n-valued logics could be interpreted in terms of error correction allowing only bit sequences, which correspond to n < p < 2 in k-bit Boolean algebra. Adelic physics would correspond to the inclusion of all p-valued logics in single adelic logic. The Stone spaces of p-adics, reals, etc.. have huge size and a possible identification (in absence of any other!) is in terms of concept of real number assigning to real/p-adic/etc... number a fiber space consisting of all units obtained as ratios of infinite primes. As real numbers they are just units but has complex number theoretic anatomy and would give rise to what I have assigned the terms algebraic holography and number theoretic Brahman = Atman.
منابع مشابه
Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملStone Duality for Skew Boolean Algebras with Intersections
We extend Stone duality between generalized Boolean algebras and Boolean spaces, which are the zero-dimensional locally-compact Hausdorff spaces, to a non-commutative setting. We first show that the category of right-handed skew Boolean algebras with intersections is dual to the category of surjective étale maps between Boolean spaces. We then extend the duality to skew Boolean algebras with in...
متن کاملBoolean Algebras, Stone Spaces, and the Iterated Turing Jump
We show, roughly speaking, that it requires ω iterations of the Turing jump to decode nontrivial information from Boolean algebras in an isomorphism invariant fashion. More precisely, if α is a recursive ordinal, A is a countable structure with finite signature, and d is a degree, we say that A has αth-jump degree d if d is the least degree which is the α-th jump of some degree c such there is ...
متن کاملA duality for involutive bisemilattices
It is a common trend in mathematics to study (natural) dualities for general algebraic structures and, in particular, for those arising from mathematical logic. The first step towards this direction traces back to the pioneering work by Stone for Boolean algebras [12]. Later on, Stone duality has been extended to the more general case of distributive lattices by Priestley [8], [9]. The two abov...
متن کامل